
1

Regression-based Hyperparameter Learning for
Support Vector Machines

Shili Peng, Wenwu Wang, Senior Member, IEEE, Yinli Chen, Xueling Zhong and
Qinghua Hu, Senior Member, IEEE

Abstract—Unification of classification and regression is a major
challenge in machine learning and has attracted increasing
attentions from researchers. In this paper, we present a new
idea for this challenge, where we convert the classification
problem to a regression problem, and then use the methods in
regression to solve the problem in classification. To this end,
we leverage the widely used maximum margin classification
algorithm, and its typical representative, Support Vector Machine
(SVM). More specifically, we convert SVM into a piecewise
linear regression task, and propose a regression-based SVM
(RBSVM) hyperparameter learning algorithm, where regression
methods are used to solve several key problems in classification,
such as learning of hyperparameters, calculation of prediction
probabilities, and measurement of model uncertainty. To analyze
the uncertainty of the model, we propose a new concept of
model entropy, where the leave-one-out prediction probability
of each sample is converted into entropy, and then used to
quantify the uncertainty of the model. The model entropy is
different from the classification margin, in the sense that it
considers the distribution of all samples, not just the support
vectors. Therefore, it can assess the uncertainty of the model
more accurately than the classification margin. In the case of the
same classification margin, the farther the sample distribution is
from the classification hyperplane, the lower the model entropy.
Experiments show that our algorithm (RBSVM) provides higher
prediction accuracy and lower model uncertainty, as compared
with state of the art algorithms, such as Bayesian hyperparameter
search and gradient-based hyperparameter learning algorithms.

Index Terms—Maximum margin classification, support vector
machine (SVM), regression, hyperparameter optimization.

I. INTRODUCTION

AMONG the classification algorithms, the maximum mar-
gin algorithm is an important type of machine learning

methods [1], which can be used for uncertain data processing

Manuscript received 1 July 2021; revised 1 January 2023, 3 September
2023, and 11 September 2023; accepted 29 September 2023. This work
was supported in part by the National Natural Science Foundation of China
under Grant 61925602 and in part by the Key Project of the Humanities and
Social Sciences Research in Universities of Guangdong Province under Grant
2018WZDXM032. (Corresponding author: Shili Peng.)

Shili Peng, Yinli Chen, and Xueling Zhong are with the School of Internet
Finance and Information Engineering, Guangdong University of Finance,
Guangzhou 510521, China (e-mail: shilipeng@gduf.edu.cn; cyl@gduf.edu.cn;
tzhongxl@gduf.edu.cn).

Wenwu Wang is with the Centre for Vision, Speech and Signal
Processing, University of Surrey, Guildford GU2 7XH, U.K. (e-mail:
w.wang@surrey.ac.uk).

Qinghua Hu is with the College of Intelligence and Computing, Tianjin
University, Tianjin 300072, China (e-mail: huqinghua@tju.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3321685.

Digital Object Identifier 10.1109/TNNLS.2023.3321685.

[2], unsupervised structured prediction [3], multi-dimensional
classification [4], Bayesian network classifier [5], etc. Its
typical representative is support vector machine (SVM) [6].
SVM is based on the Vapnik-Chervonenkis dimension theory,
and obtains the best generalization ability by searching for the
largest classification margin in the feature space [7]. It has a
solid theoretical foundation and is easy to implement, so it
has been successfully applied to a variety of learning tasks
[8], such as medical diagnosis [9], image processing [10], and
thermographic fault diagnosis [11], [12].

SVM has been developed continuously since it was pro-
posed. A variety of new SVM algorithms are emerging to
improve their training speed and promote their applications.
Among them, twin support vector machine (TWSVM) is
particularly prominent [13]. For binary classification problems,
TWSVM constructs a hyperplane for each class sample. The
sample of each class is as close as possible to the hyperplane of
its class and as distant as possible from the hyperplane of the
other class [14]. TWSVM not only maintains the advantages
of SVM, but also improves the training speed by four times
[13]. In order to further improve the performance of TWSVM
and promote its application, researchers have proposed various
improved algorithms [13]. For example, the least squares
twin support vector machine (LSTSVM) is proposed, whose
training process is to solve linear equations to achieve faster
training speed [13]. In order to meet the needs of large-scale
learning, Ganaie et al. proposed large-scale fuzzy LSTSVM,
which does not involve matrix inversion, and thus further
improves the training speed [15].

Noise is ubiquitous in real-world learning tasks, which
usually reduces the classification accuracy of the model, and
makes the learning task more complex [16], [17]. There
are also several improved TWSVM and SVM methods for
processing noisy data. For example, Tanveer et al. proposed
an intuitionistic fuzzy weighted TWSVM, which can reduce
the influence of outliers and noise [18]. Moslemnejad et al.
applied the belief function theory to the detection of noise
and outliers [19]. Hamidzadeh et al. used confidence function
and rough set theory to determine boundary samples and
noise [20]. For multiclass data classification, Moslemnejad et
al. proposed weighted SVM to improve the noise sensitivity
[21]. For uncertain data, Liang et al. proposed uncertainty-
aware TWSVM [22], where an interesting theorem is derived
by transforming the multi-dimensional integrals into one-
dimensional integrals to obtain a simplified model [22].

However, some key issues that still exist in SVM have not
been resolved, such as the choice of hyperparameters [23].

2

SVM is very sensitive to hyperparameters, and its performance
depends on the choice of hyperparameters, such as the band-
width 𝜎 of the Gaussian kernel and the penalty coefficient
𝐶 [24]. Therefore, the optimization of hyperparameters in
SVM has received a lot of attention [25]. Recently, with
the focus on complex machine learning models with many
hyperparameters [26], the research on hyperparameter opti-
mization algorithms has regained widespread attention [27],
[28]. Common methods include grid search, random search
and Bayesian optimization [29]. These algorithms can be
directly used for SVM hyperparameter learning.

When the number of hyperparameters is small, grid search
is a commonly used optimization method [30]. The grid search
method is considered a traditional hyperparameter optimiza-
tion method, which creates models for each combination of hy-
perparameters and evaluates their performance on a validation
set. Then, the hyperparameter with the smallest error on the
validation set is regarded as the optimal hyperparameter. The
search range of hyperparameters is generally selected based
on experience or adjusted gradually. Although this method is
very simple, the number of performance evaluations increases
exponentially with the increase of the hyperparameter dimen-
sion [31]. Another problem is that when the accuracy of SVM
is increased, the number of evaluations for hyperparameters
required will be greatly increased [32]. As a result of these
factors, the grid search method is inefficient and unable to
accommodate large-scale data processing.

To address the limitation in grid search, Bergstra et al.
proposed a random search method, which usually can obtain
better hyperparameters [33]. This method defines a marginal
distribution for each hyperparameter, and then randomly se-
lects values to form a set of hyperparameters for model
training and validation. In the grid search, if a hyperparameter
has no effect on the performance of the model, then the same
performance would be obtained even if this hyperparameter is
set to different values, provided that the other hyperparameters
remain fixed. This leads to many meaningless performance
evaluations, however, the random search method can avoid this
problem [34]. In addition, random search does not require any
assumptions about the learning task. With sufficient computing
resources, the random search method can be infinitely close
to the globally optimal solution [35]. Grid and random search
are relatively simple, but neither of them uses models and
historical information. Different from these two methods, the
Bayesian hyperparameter optimization method uses historical
information to approximate the model and iteratively searches
for the optimal hyperparameter [36]. There are two key
components in the iterative process: the surrogate model and
the acquisition function [32]. Surrogate models are used to
fit historical hyperparameters. The acquisition function uses
a probability model to predict the performance of different
candidate hyperparameters [36]. The Bayesian hyperparameter
optimization method has achieved excellent performance in
image classification and speech recognition based on deep
neural networks [36]. However, the Bayesian hyperparameter
optimization method is not always stable, sometimes the
performance is excellent, but sometimes catastrophic errors
occur on certain tasks [37].

Another important type of hyperparameter learning method
is based on the generalization error gradient, which is used
to guide the optimization of hyperparameters. Different from
black-box model optimization methods such as grid search,
random search and Bayesian search, this method uses the
gradient information of the hyperparameters, not just the error
information. In practice, the gradient-based hyperparameter
learning method is superior to the black-box model based
method in terms of performance and speed. The main reason
is that the gradient-based learning method makes full use of
the gradient information of the model [37]. Although grid
search, random search and Bayesian search methods can all be
used to optimize the hyperparameters of SVM, our research
mainly focuses on gradient-based hyperparameter learning to
minimize the generalization error of SVM.

The SVM generalization error is a function of the minimum
sphere radius and the classification margin in the feature space
[7]. When the feature mapping function (i.e., kernel function
and hyperparameters) is given, the minimum sphere radius
of the sample is fixed. Therefore, SVM can minimize the
generalization error by maximizing the classification margin.
However, the change of hyperparameters will cause the fea-
ture space to change, and the minimum sphere radius is no
longer fixed. Therefore, the influence of the minimum sphere
radius needs to be considered in hyperparameter learning. For
example, Chapelle et al. used the Radius-Margin (RM) bound
as the generalization error estimation to guide SVM hyperpa-
rameter learning [38]. At present, most SVM hyperparameter
learning is based on radius-margin or its improved algorithm
[39]. However, the randius-margin bound is derived from the
Vapnik-Chervonenkis dimension, considering the worst case
in the feature space. If there are outliers in the sample, it will
affect the accuracy of the generalization error estimation [40].

The motivation of this work is to use the leave-one-out
method to solve hyperparameter learning, probability esti-
mation and uncertainty measurement of a maximum margin
classifier. Leave-one-out is an unbiased estimation of gen-
eralization error for the regression model, but it cannot be
directly used for generalization error estimation for classifica-
tion. Therefore, we convert the maximum margin classification
problem into a piecewise linear regression task. Different
from the radius-margin methods, we propose a regression-
based SVM (RBSVM) hyperparameter learning method. In the
leave-one-out generalization error estimation, the loss function
must be smooth to calculate its gradient. Therefore, the 0-1
step loss function in classification needs to be transformed
into a smooth loss function. A common solution is to approx-
imate the 0-1 step loss function with the sigmoid function
𝑔(𝑥) = (1 + exp(−𝑎𝑥))−1 and then calculate its gradient, as in
the span algorithm [38]. However, the choice of the constant
𝑎 is not trivial. If 𝑎 is too small, the error estimate is not
accurate. If 𝑎 is too large, the error estimate is not smooth,
and the samples far away from the discriminant hyperplane
will lead to gradient disappearance.

The RBSVM algorithm we proposed is a completely dif-
ferent method, which performs generalization error estimation
and hyperparameter learning from a regression perspective. We
formulate the SVM classification task as a piecewise linear

3

regression task, use the tanh function to approximate this
regression function, and calculate the cross-entropy general-
ization error. Then the hyperparameter learning is performed
according to the cross-entropy generalization error, instead of
calculating the step loss of each sample. In addition, the value
range of the tanh function is [-1, +1], corresponding to the
classification label {-1, +1}, which can be easily converted
into classification probability to measure the uncertainty of
the model.

In summary, the contributions of this article can be summa-
rized as follows.

1) We convert the maximum margin classification problem
into a regression task, and propose a new hyperparam-
eter optimization algorithm RBSVM. The cross-entropy
generalization error is applied to SVM generalization er-
ror estimation and hyperparameter learning. Converting
classification tasks into regression tasks provides a new
solution to classification problems, and hyperparameter
learning can be considered as its typical application.

2) In order to achieve an unbiased estimation of the gen-
eralization error by using the leave-one-out method,
we use the tanh function to approximate the piecewise
linear function, which is equivalent to the maximum
margin classifier, instead of using the sigmoid function
to approximate the 0-1 step loss function of each sample.
The approximation method aims to make the gradient of
the tanh function at the classification boundary equal to
the gradient of the piecewise linear function. The reason
for choosing this approximation is because the boundary
is crucial to the classification model.

3) We propose to use model entropy to measure the uncer-
tainty of the classification model. The model entropy is
based on the leave-one-out method, which considers the
predicted probability and distribution of all samples, not
just the support vectors. Thus, it offers advantages over
the classification margin, which is affected by the regular
hyperparameters, does not consider the distribution of
the samples, and thus cannot accurately describe the
uncertainty of the model.

II. RELATED WORK

It is usually expected that a machine learning model (such as
SVM) can select an optimal hyperparameter to minimize the
actual prediction error. However, the actual prediction error
is often not directly measured, and can only be estimated
indirectly by calculating the generalization error bound. There-
fore, this section introduces the SVM hyperparameter learning
method and generalization error estimation, such as leave-one-
out error estimation (𝑇𝐿𝑜𝑜), span error estimation (𝑇𝑆𝑝𝑎𝑛) and
RM error estimation (𝑇𝑅𝑀) [38].

A. Support Vector Machine

For the given 𝑛 training samples {(x1, 𝑦1), ..., (x𝑛, 𝑦𝑛)},
where x and 𝑦 are respectively the sample and its correspond-
ing label, SVM maps x to a high-dimensional feature space
through the mapping function Φ, and then finds the linear

discriminant function with the largest classification margin in
the feature space 𝑓 (x) [7]:

𝑓 (x) = w𝑇Φ(x) + 𝑏, (1)

where w is the weight coefficient, and 𝑏 is the bias term.
We mainly study the binary-classification task, namely

𝑦𝑖 ∈ {−1, +1}. It is the basic problem of classification tasks,
and multi-classification tasks can be converted into multiple
binary-classification tasks [41]. In a binary classification task,
if the sample is linearly separable in the feature space, the
parameters w and 𝑏 of the linear discriminant function 𝑓 (x)
can be obtained by solving the following convex optimization
problem [7]:

min
w,𝑏

1
2
w𝑇w

s.t. 𝑦𝑖 (w𝑇Φ(x) + 𝑏) ≥ 1, ∀𝑖.
(2)

In order to avoid the dimensionality catastrophe caused by
feature mapping Φ(x), the optimization problem (2) is usually
not solved directly. Using the Lagrangian dual method, the
above optimization problem is transformed into a dual problem
to be solved. In duality, the vector inner product is calculated
by the kernel function, that is, 𝑘 (x𝑖 ,x 𝑗) = Φ(x𝑖)𝑇Φ(x 𝑗). The
duality corresponding to the above original problem (2) is:

max
α

𝑛∑
𝑖=1

𝛼𝑖 −
1
2

𝑛∑
𝑖, 𝑗=1

𝛼𝑖𝛼 𝑗 𝑦𝑖𝑦 𝑗 𝑘 (x𝑖 ,x 𝑗)

s.t.
𝑛∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0, ∀𝑖,
(3)

where 𝛼𝑖 is a non-negative dual variable, and 𝑘 (., .) is a
specific kernel function. In SVM, the kernel function and its
hyperparameters are very important. The most commonly used
kernel function is the Gaussian kernel 𝑘𝐺𝑎𝑢 , which is defined
as follows:

𝑘𝐺𝑎𝑢 (x𝑖 ,x 𝑗) = 𝑒𝑥𝑝
(
−
||x𝑖 − x 𝑗 | |2

2𝜎2

)
, 𝜎 ∈ 𝑅+, (4)

where 𝜎 is the hyperparameter of the kernel function. The
Gaussian kernel function has good performance and is widely
used in various fields.

If the sample is not linearly separable in the feature space,
slack variables can be introduced to form a soft margin SVM.
There are two types of penalty for slack variables: 𝐿1 norm
and 𝐿2 norm. For example, the original problem corresponding
to the 𝐿2 norm soft margin SVM is:

min
w,𝑏

1
2
w𝑇w + 𝐶

2

𝑁∑
𝑖=1

𝜉2
𝑖 ,

s.t. 𝑦𝑖 (w𝑇Φ(x) + 𝑏) ≥ 1 − 𝜉𝑖 , ∀𝑖,
(5)

where 𝐶 is the hyperparameter that penalizes the training
error, and 𝜉𝑖 is the slack variable [7]. The corresponding dual
problem is:

max
α

𝑛∑
𝑖=1

𝛼𝑖 −
1
2

𝑛∑
𝑖, 𝑗=1

𝛼𝑖𝛼 𝑗 𝑦𝑖𝑦 𝑗

(
𝑘 (x𝑖 ,x 𝑗) +

1
𝐶

)
s.t.

𝑛∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0, ∀𝑖.
(6)

4

From the comparative analysis of 𝐿2 norm soft margin SVM
and hard margin SVM, it can be seen that the soft margin SVM
algorithm with the 𝐿2 norm penalty is equivalent to the hard
margin SVM with modified kernel matrix 𝐾 [38]:

𝐾 = 𝐾 + 1
𝐶
𝐼, (7)

where 𝐾 is the kernel matrix corresponding to the kernel
function 𝑘 (·, ·), 𝐼 is the identity matrix, and 𝐶 is the penalty
coefficient of the slack variables. Since the soft margin SVM
can be converted to the hard margin SVM by the formula (7),
the derivation and calculation of the generalization error in
this paper mainly focuses on the hard margin SVM.

B. Radius-Margin Generalization Error Estimation

Radius-Margin generalization error estimation is a very
important error estimation method in SVM. It is derived from
Vapnik-Chervonenkis dimension by Vapnik et al. [7]. Radius-
Margin generalization error upper bound 𝑇𝑟𝑚 is:

𝑇𝑟𝑚 =
1
𝑛

𝑅2

𝑀2 , (8)

where 𝑀 is the maximum classification margin, 𝑅 is the
minimum sphere radius that contains all samples in the feature
space, and 𝑛 is the number of training samples. Later, Bartlett
et al. gave a more accurate estimation [42]. There is a certain
constant 𝑐, for which the generalization error estimation bound
of SVM 𝑇𝑠𝑣𝑚 holds with the probability of 1 − 𝛿,

𝑇𝑠𝑣𝑚 =
𝑚

𝑛
+

√
𝑐

𝑛

(
𝑅2

𝑀2 𝑙𝑜𝑔
2 (𝑛) + log(1

𝛿
)
)
, (9)

where 𝑛 is the number of samples in the training set, and 𝑚 is
the number of misclassified samples. If the distribution of the
sample in the feature space is a flat ellipsoid, the corresponding
sphere radius will be very large, which will affect the accurate
estimation of the generalization error. In order to address this
problem, it is usually necessary to normalize the sample to
render a uniform spherical distribution in the feature space
[38].

C. Leave-one-out Generalization Error Estimate

The leave-one-out method is another generalization error
estimation method, which is an extreme case of K-fold cross-
validation. A test sample is selected from the training set, and
the remaining (𝑛−1) samples are used to train the model. The
model is then used to predict the test sample. Each sample is
selected in turn as a test sample, and the remaining samples
are used to train the model. The average prediction accuracy
of 𝑛 samples is used as an estimate of model generalization
error, which is an almost unbiased estimate. The definition of
estimated 𝑇𝑙𝑜𝑜 is as follows [38], [43], [44]:

𝑇𝑙𝑜𝑜 =
1
𝑛

𝑛∑
𝑖=1

𝐸𝑛−1
𝑖 (x𝑖 , 𝑦𝑖) =

1
𝑛

𝑛∑
𝑖=1

Ψ(−𝑦𝑖 𝑓 𝑖 (x𝑖)) (10)

where 𝐸𝑛−1
𝑖 (x𝑖 , 𝑦𝑖) is the prediction error of x𝑖 by the model

trained after removing the sample x𝑖 , and 𝑓 𝑖 (x𝑖) is its

prediction value. Ψ(𝑥) is a non-smooth step function, when
𝑥 > 0, Ψ(𝑥) = 1, otherwise Ψ(𝑥) = 0.

The leave-one-out method is a very important generalization
error estimation. However, this method needs to build 𝑛 models
to predict the reserved single sample, which is very difficult in
practice. Therefore, this method is usually used to analyze and
derive other easy-to-calculate generalization error estimation
bounds [38].

Opper and Winther were inspired by the linear response
theory [45]. Assuming that the set of support vectors does not
change after the 𝑖 sample is removed, the following formula
holds:

𝑦𝑖 (𝑓 0 (x𝑖) − 𝑓 𝑖 (x𝑖)) =
𝛼𝑖

(𝐾−1
𝑆𝑉)𝑖𝑖

, (11)

where 𝑓 0 is the model obtained by training all samples,
and 𝐾𝑆𝑉 is the support vector kernel matrix. Therefore, the
corresponding leave-one-out generalization error estimation
bound is

𝑇𝑙𝑜𝑜 ≤ 1
𝑛

𝑛∑
𝑖=1

Ψ

(
𝛼𝑖

(𝐾−1
𝑆𝑉)𝑖𝑖

− 1

)
. (12)

Later, Chapelle et al. considered the change in the sup-
port vector set caused by removing a single sample, and
smoothed the generalization error estimation. Furthermore,
they proposed the span error estimation and gave a geometric
explanation for it [38].

D. Span Generalization Error Estimation

Span generalization error estimation bound is derived by
Chapelle and Vapnik based on the support vector span [38].
The span value 𝑆2

𝑖 of the support vector x𝑖 is defined as the
distance between the sample x𝑖 and the set Λ𝑖 in the feature
space. The definition of the set Λ𝑖 is:

Λ𝑖 =

∑

𝑗≠𝑖,𝛼𝑗 ≥0
𝜆 𝑗Φ(𝑥 𝑗),

∑
𝑗≠𝑖

𝜆 𝑗 = 1
 , (13)

where 𝛼 𝑗 is the dual variable corresponding to the sample x 𝑗 .
Correspondingly, the estimation bound of span generalization
error is [38]:

𝑇𝑠𝑝𝑎𝑛 =
1
𝑛

𝑛∑
𝑖=1

Ψ(𝛼𝑖𝑆2
𝑖 − 1), (14)

where 𝑆𝑖 is the span value of the sample x𝑖 , and Ψ is the step
loss function.

Span is a generalization error estimate that is very close to
the leave-one-out method, but the estimate is not continuous
[38]. There are two main reasons for this. One is that the
Ψ function is a discontinuous step function and needs to be
approximated by a smooth function. The second is that the
change of the support vector set will cause the non-continuous
change of Λ𝑖 . One solution is to penalize the change of Λ𝑖 to
make it as smooth as possible.

5

III. REGRESSION-BASED SVM

Since the classification label 𝑦𝑖 ∈ {−1, +1} is a non-
continuous discrete value, its generalization error estimate is
usually also discontinuous. In order to use the gradient-based
hyperparameter learning method, the generalization error esti-
mate needs to be smoothed. The common method is to use the
sigmoid function to approximate the 0-1 step loss function.

Different from these existing algorithms, we perform SVM
hyperparameter learning from the perspective of regression,
and propose a regression-based SVM hyperparameter learning
algorithm RBSVM. RBSVM converts the SVM into a piece-
wise linear regression problem, and then performs hyperpa-
rameter learning without artificially setting the approximate
function parameters.

A. Regression Equivalent to SVM and Approximation

Non-linear separable L2-SVM can be converted into linear
separable L2-SVM by modifying the kernel matrix. That
is, through Formulation (7), the soft-margin SVM can be
converted to hard-margin SVM, so the regression equivalent
analysis of SVM only focuses on hard-margin SVM classifica-
tion. L2-SVM can be equivalently converted into a piecewise
linear regression. The analysis and proof are as follows.

Theorem III.1. The L2 regularization SVM classification
can be equivalently transformed into a piecewise linear least
square regression with L2 regularization.

That is, the L2-SVM classification algorithm:

min
w,𝑏

1
2
w𝑇w + 𝐶

2

𝑁∑
𝑖=1

𝜉2
𝑖 ,

s.t. 𝑦𝑖 (w𝑇Φ(x) + 𝑏) ≥ 1 − 𝜉𝑖 , ∀𝑖,
(15)

can be equivalently converted to least square regression:

min
w,𝑏

1
2
w𝑇w + 𝐶

2

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓𝑧 (w𝑇Φ(x) + 𝑏))2, (16)

where 𝐶 is the penalty coefficient of the training error, and
𝑓𝑧 (·) is the piecewise linear function:

𝑓𝑧 (𝑡) =

+1, 𝑖 𝑓 𝑡 > 1;
𝑡, 𝑖 𝑓 − 1 ≤ 𝑡 ≤ 1;

−1, 𝑖 𝑓 𝑡 < −1;
. (17)

Proof: The theorem can be proved separately according to
the value of w𝑇Φ(xi) + 𝑏.

For non-support vectors, they are all outside the positive or
negative boundary. When w𝑇Φ(xi) + 𝑏 > 1, we know that
𝑓𝑧 (w𝑇Φ(xi) + 𝑏) = 1. In this case, the label is 𝑦𝑖 = 1, it can
be seen that 𝑦𝑖 − 𝑓𝑧 (w𝑇Φ(x) + 𝑏)) = 0. That is, the square of
the loss in the regression is zero, which is equivalent to the
case of 𝜉𝑖 = 0 in L2-SVM.

When w𝑇Φ(xi) + 𝑏 < −1, there is 𝑓𝑧 (w𝑇Φ(xi) + 𝑏) = −1.
At this time, the label is 𝑦𝑖 = −1, and the squared loss in the
regression is also zero, which is also equivalent to the case of
𝜉𝑖 = 0 in L2-SVM.

For support vectors, these samples are located within or on
the classification boundary. Therefore, when −1 < w𝑇Φ(xi)+

𝑏 < 1, the squared loss in the regression is (w𝑇Φ(xi)+𝑏−𝑦𝑖)2,
which is equivalent to (𝑦𝑖 (w𝑇Φ(xi) + 𝑏) − 1)2 in L2-SVM.
That is the case of 𝜉𝑖 ≠ 0 in L2-SVM.

The regular term in piecewise linear regression corresponds
to the classification margin in L2-SVM. Based on the above
discussion, it can be obtained that the L2-SVM classification
is equivalent to the regularized least squares piecewise linear
regression. The proof is complete. □

This theorem provides a new perspective for maximum
margin classification. The generalization error estimation and
uncertainty measurement of the classification task can be
analyzed from the perspective of regression. That is, the non-
support vectors in L2-SVM correspond to samples with zero
squared loss in piecewise linear regression, and the support
vectors correspond to samples with non-zero squared loss in
regression. It should be clarified that L2-SVM is equivalent
to piecewise linear regression without losing the excellent
sparsity properties of SVM. This is because, the purpose of
converting L2-SVM to regression is to calculate an unbiased
estimate for the generalization error by using the leave-one-out
method. Then, the learning of hyperparameters is implemented
based on this generalization error estimation, whereas the
training of the model still uses the L2-SVM. In other words,
the RBSVM algorithm is for hyperparameter learning rather
than parameter learning. Therefore, after obtaining the optimal
hyperparameters, the L2-SVM model with the hyperparam-
eters can still maintain its sparsity property. The equivalent
regression of L2-SVM can be more intuitively understood
from Figure 1, where the value of the label 𝑦 is plus or minus
1, and the classification margin 𝑑 is equal to the regularization
of piecewise linear regression.

Fig. 1. The L2-SVM classification is equivalent to regularized piecewise linear
least squares regression. The red triangle is the negative class, and the green
diamond is the positive class. The optimal SVM interface is the y-axis (that
is, 𝑥 = 0). The discriminant function is 𝑦 = w𝑇x = 0.5𝑥. The classification
margin is 𝑑 = 2/| |w | | = 4. The margin is equal to the regularization of the
coefficients of the piecewise linear function at the interface, which is 𝑦 = 0.5𝑥.

Although the maximum margin classification can be equiv-
alent to a piecewise linear regression, the piecewise linear
function function is not differentiable at the inflection point,
and its gradient cannot be directly calculated for parameter
learning. Therefore, we use the smooth tanh function to
approximate the piecewise linear function. In this way, on the

6

one hand, it is convenient to calculate the gradient in order
to optimize the generalization error. On the other hand, the
sample classification probability can be obtained according
to the tanh function so that the uncertainty of the model
is measured (i.e., the model entropy proposed later in this
section). The approximation method is to make the gradient
of the tanh function at the discriminant intersection (that is,
𝑦 = 0) equal to the gradient of the piecewise linear function
at this point. The tanh function is

tanh(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧 .

Its derivative is ∇𝑧 tanh(𝑧) = 1 − 𝑦2, where 𝑦 is the corre-
sponding function value. When the independent variable 𝑧 is
w𝑇x + 𝑏, the gradients of the tanh function to w, 𝑏 are:

∇wtanh(w𝑇x + 𝑏) = (1 − 𝑦2)x,
∇𝑏 tanh(w𝑇x + 𝑏) = (1 − 𝑦2).

(18)

In the feature space, the function value of SVM at the interface
is 0 (i.e. 𝑦 = 0), the derivative with respect to w is x, and the
derivative with respect to 𝑏 is 1. Therefore, the tanh function
approximated to the piecewise function is:

𝑔(w, 𝑏) = tanh(w𝑇x + 𝑏), (19)

where the values of w and 𝑏 are the coefficients and bias
terms of the SVM respectively. For example, the tanh function
similar to the SVM in Figure 1 is 𝑔(w, 𝑏) = tanh(0.5𝑥), as
shown in Figure 2.

Fig. 2. The continuous regression function tanh(0.5𝑥) is used to approximate
the SVM in Figure 1. It should be noted that this method does not use the
sigmoid function to approximate the 0-1 step loss function, but uses the tanh
function to approximate the SVM model.

The purpose of using regression to approximate SVM
is for hyperparameter learning and uncertainty analysis. On
the one hand, tanh is a smooth function that facilitates the
calculation of the leave-one-out generalization errors and their
gradients. The leave-one-out method provides an unbiased
estimation of the generalization error, which can accurately
reflect the generalization performance of the model [38], [46].
On the other hand, the range of the tanh function is [-1, +1],
which can be mapped to the [0, 1] interval to represent the
probability of classification. This makes it easier to analyze
model uncertainty.

B. Generalization Error Estimation of RBSVM

The hyperparameter learning of RBSVM that we propose
here is different from the traditional hyperparameter learning
based on the leave-one-out method. The leave-one-out hyper-
parameter learning method uses leave-one-out to estimate the
generalization error after solving L2-SVM. Then, the sigmoid
function is used to approximate the 0-1 loss function to make
the estimation smooth, and the generalization error gradient
is used to guide the hyperparameter learning. The RBSVM
algorithm is different. After obtaining the L2-SVM optimal
solution, RBSVM converts the SVM model into a regression
task equivalently, and approximates it with the tanh function.
Then, the gradient of the cross-entropy loss function is used
to guide the hyperparameter learning. The generalization error
estimation process of RBSVM is shown in Figure 3.

It should be noted that after the SVM classification is
converted to a regression task, the corresponding 0-1 loss
is converted into a cross-entropy loss, so there is no need
to approximate the 0-1 step loss function. The cross-entropy
loss is directly used to guide the learning of hyperparameters
and the analysis of model uncertainty. That is, traditional
L2-SVM classification uses hinge loss, so model analysis
and hyperparameter learning need to use 0-1 discontinuous
loss function. However, RBSVM uses regression function to
approximate SVM, and model analysis and hyperparameter
learning are processed by the cross-entropy loss.

When the non-support vector (that is, 𝛼 = 0) is removed
from the training set, it does not affect the optimal solution.
In other words, after the non-support vector is removed, it
can still be correctly predicted. Therefore, the estimation of
generalization error only needs to consider the support vector.

For hard-margin L2-SVM, all support vector points (i.e.
𝛼𝑖 ≠ 0) are on the boundary. According to the KKT dual
complementarity condition:

𝛼𝑖 (𝑦𝑖 (w𝑇x𝑖 + 𝑏) − 1 + 𝜉𝑖) = 0, (20)

we can obtain 𝑦𝑖 (w𝑇x𝑖 + 𝑏) − 1 + 𝜉𝑖 = 0, that is, w𝑇x𝑖 + 𝑏 +
𝑦𝑖𝜉𝑖 = 𝑦𝑖 . In addition, the following equations can be obtained
according to the KKT conditions,

w =
𝑁∑
𝑗=1

𝑦 𝑗𝛼 𝑗 𝑘 (.,x 𝑗), 𝜉𝑖 =
1
𝐶
𝛼𝑖 ,

𝑁∑
𝑗=1

𝑦𝑖𝛼𝑖 = 0. (21)

Therefore, the KKT condition can be equivalent to the solution
of the following linear equation (22).[

H 1

1𝑇 0

]
·
[
αy

𝑏

]
=

[
y

0

]
(22)

where 𝐻 = 𝐾 + 1
𝐶 𝐼, (αy)𝑖 = 𝛼𝑖 ∗ 𝑦𝑖 .

In leave-one-out, removing non-support vectors does not
affect the optimal solution, but removing support vectors will
affect the optimal solution. Therefore, the analysis of the leave-
one-out mainly focuses on the removal of support vectors.
For the convenience of presentation, assume that x1 is the
removed support vector, and 𝛼−1 and 𝑏−1 represent the optimal
solution of SVM after removing the support vector x1. In
order to analyze the effect of removing the support vector

7

Fig. 3. RBSVM generalization error estimation framework. The tanh function is used to approximate the piecewise regression function equivalent to SVM, and
then the leave-one-out method is used to estimate the cross-entropy generalization error. This estimation is used for hyperparameter learning and uncertainty
analysis. In the framework, 𝛼𝑖 is the optimal solution of L2-SVM, 𝑦𝑖−𝑖 is the leave-one-out prediction label of sample xi, 𝐿 (𝑦𝑖−𝑖 , 𝑦𝑖) is the leave-one-out
cross-entropy loss, and 𝐻−𝑖

𝑖𝑖 is the 𝑖th element of the main diagonal of the inverse of the extended kernel matrix.

on the prediction, the following matrix decomposition can be
performed [43]. [

H 1

1𝑇 0

]
=

[
𝑚11 m𝑇

1
m1 𝑀1

]
= 𝑀 (23)

where 𝑚11 is the element 𝐻11, and 𝑀1 is the block matrix after
removing x1. Therefore, the optimal solution after removing
x1 is: [

α−1

𝑏−1

]
= 𝑀−1

1 [𝑦2, ..., 𝑦𝑚, 0]𝑇 . (24)

Therefore, the prediction for the removed sample x1 is:

�̂�−1
1 = m𝑇

1 [α−1 𝑏−1]𝑇

= m𝑇
1 𝑀

−1
1 𝛼1 +m𝑇

1 [𝛼2, ..., 𝛼𝑛, 𝑏]𝑇 .
(25)

On the other hand, according to the KKT optimal condition
(23), there are 𝑦1 = 𝑚11𝛼1 + m𝑇

1 [𝛼2, ..., 𝛼𝑛, 𝑏]𝑇 . Combining
the above Formulation (25), a relationship can be established
for �̂�−1

1 and 𝑦1:

�̂�−1
1 = 𝑦1 − 𝛼1 (𝑚11 −m𝑇

1 𝑀
−1
1 m1) = 𝑦1 −

𝛼1

(𝐻−1)11
, (26)

where the last equation is the Woodbury formula (𝐻−1)11 =
𝑚11 − m𝑇

1 𝑀
−1
1 m1 [43]. In the derivation process, since the

formula is not sensitive to the sequence number of the sample,
the sample sequence can be perturbed to get the same result.
Therefore, the superscript 1 can be replaced with 𝑖, and the
following formula can be obtained [43]:

�̂�−𝑖𝑖 = 𝑦𝑖 (1 − 𝛼𝑖
(𝐻−1)𝑖𝑖

). (27)

In Formulation (27), the leave-one-out prediction value �̂�−𝑖𝑖
is discontinuous, and the generalization error estimation based
on this is also discontinuous [38]. In order to calculate its
gradient to guide hyperparameter learning, it needs to be
converted into a continuous estimation. RBSVM approximates

its predicted value to tanh regression output, and then calcu-
lates its leave-one-out generalization error estimation by cross-
entropy. The approximate tanh output of SVM �̃�−𝑖𝑖 is

�̃�−𝑖𝑖 = tanh(�̂�−𝑖𝑖), (28)

where �̃�−𝑖𝑖 and �̂�−𝑖𝑖 have the same gradient at the discrimination
interface.

RBSVM learns the hyperparameters of the model so that
the output of the leave-one-out method approaches the bino-
mial distribution of the real data as much as possible. This
method is similar to but different from maximum likelihood
estimation. The difference between RBSVM and maximum
likelihood estimation is that maximum likelihood estimation
is based on the training set for parameter learning, while RB-
SVM uses leave-one-out prediction for model hyperparameter
learning instead of parameter learning.

The range of tanh function is [-1,1], which can be converted
into probability by scaling. Similarly, the sample label value
can also be scaled to the binomial distribution, and then the
cross-entropy loss can be calculated. The leave-one-out cross-
entropy loss is:

𝐿 (𝑦𝑖 , �̃�−𝑖𝑖) = −
(
1 + 𝑦𝑖

2
log

1 + �̃�−𝑖𝑖
2

+ 1 − 𝑦𝑖
2

log
1 − �̃�−𝑖𝑖

2

)
= −𝑦𝑖 �̂�−𝑖𝑖 + log

(
exp(�̂�−𝑖𝑖) + exp(−�̂�−𝑖𝑖)

)
= −(1 + 𝑦𝑖) �̂�−𝑖𝑖 + log

(
1 + exp(2�̂�−𝑖𝑖)

)
,

(29)

where 𝑦𝑖 is the sample label, �̂�−𝑖𝑖 is the leave-one-out output
of SVM, and �̃�−𝑖𝑖 is the leave-one-out prediction of RBSVM:

�̃�−𝑖𝑖 = tanh(�̂�−𝑖𝑖) = tanh
(
𝑦𝑖 −

𝛼𝑖𝑦𝑖
(𝐻−1)𝑖𝑖

)
. (30)

RBSVM performs hyperparameter learning by minimizing
the leave-one-out cross-entropy, so it is necessary to calculate

8

the gradient of the cross-entropy with respect to the hyper-
parameters. The gradient of the cross-entropy loss function
𝐿 (𝑦𝑖 , �̃�−𝑖𝑖) with respect to the hyperparameters is as follows:

∇𝜃𝐿 (𝑦𝑖 , �̃�−𝑖𝑖) = −∇𝜃

(
1 + 𝑦𝑖

2
log

1 + �̃�−𝑖𝑖
2

+ 1 − 𝑦𝑖
2

log
1 − �̃�−𝑖𝑖

2

)
= ∇𝜃

(
−𝑦𝑖 �̂�−𝑖𝑖 + log

(
exp(�̂�−𝑖𝑖) + exp(−�̂�−𝑖𝑖)

))
= −𝑦𝑖∇𝜃 �̂�

−𝑖
𝑖 + tanh

(
�̂�−𝑖𝑖

)
∇𝜃 �̂�

−𝑖
𝑖

=
(
�̃�−𝑖𝑖 − 𝑦𝑖

)
∇𝜃 �̂�

−𝑖
𝑖 ,

(31)
and the gradient of the RBSVM output �̃�−𝑖𝑖 with respect to the
hyperparameters is:

∇𝜃 �̃�
−𝑖
𝑖 =

(
1 − (�̃�−𝑖𝑖)2

)
∇𝜃 �̂�

−𝑖
𝑖 (32)

Then, the objective function of leave-one-out cross-entropy
𝐽 (θ) is

𝐽 (𝜃) =
𝑚∑
𝑖=1

𝐿 (𝑦𝑖 , �̃�−𝑖𝑖)

= −
𝑚∑
𝑖=1

(
(1 + 𝑦𝑖) �̂�−𝑖𝑖 − log(1 + exp(2�̂�−𝑖𝑖))

)
,

(33)

where θ is its hyperparameter (such as θ = {𝜎,𝐶} for
the Gaussian kernel), and 𝑚 is the number of samples. The
corresponding gradient formulation with respect to its hyper-
parameters is,

∇𝜃 𝐽 (𝜃) =
𝑚∑
𝑖=1

∇𝜃𝐿 (𝑦𝑖 , �̃�−𝑖𝑖) =
𝑚∑
𝑖=1

(�̃�−𝑖𝑖 − 𝑦𝑖)∇𝜃 �̂�
−𝑖
𝑖 , (34)

where (�̃�−𝑖𝑖 − 𝑦𝑖)∇𝜃 �̂�
−𝑖
𝑖 is the partial derivative of the cross-

entropy loss function Formulation (29), �̃�−𝑖𝑖 is the leave-one-
out prediction of RBSVM, and 𝑦𝑖 is the label of sample 𝑖.
∇𝜃 �̂�

−𝑖
𝑖 is the partial derivative of the leave-one-out prediction

with respect to the hyperparameter 𝜃, calculated as follows:

∇�̂�−𝑖𝑖 = −𝑦𝑖

(
∇𝛼𝑖

(𝐻−1)𝑖𝑖
+ 𝛼𝑖

∇𝐻−1
𝑖𝑖

(𝐻−1)2
𝑖𝑖

)
= −𝑦𝑖

(
−𝐻−1

𝑖𝑖 ∇𝐻𝑖𝑖𝛼𝑖

(𝐻−1)𝑖𝑖
+ 𝛼𝑖

−𝐻−1
𝑖𝑖 ∇𝐻𝑖𝑖𝐻

−1
𝑖𝑖

(𝐻−1)2
𝑖𝑖

)
= 𝑦𝑖𝛼𝑖∇𝐻𝑖𝑖

(
1 + 1

𝐻−1
𝑖𝑖

)
.

(35)

where ∇𝛼𝑖 = −𝐻−1
𝑖𝑖 ∇𝐻𝑖𝑖𝛼𝑖 , ∇𝐻−1

𝑖𝑖 = −𝐻−1∇𝐻𝑖𝑖𝐻
−1
𝑖𝑖 [43]. 𝐻−1

𝑖𝑖
is the element 𝑖𝑖 of the 𝐻−1, ∇𝐻𝑖𝑖 is the partial derivative of
matrix 𝐻 to the parameter 𝜃.

Substituting Formulation (35) into Formulation (34), we can
get:

∇𝐽 (𝜃) =
𝑚∑
𝑖=1

(�̃�−𝑖𝑖 − 𝑦𝑖)∇𝜃 �̂�
−𝑖
𝑖

=
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 (�̃�−𝑖𝑖 − 𝑦𝑖)∇𝐻𝑖𝑖

(
1 + 1

𝐻−1
𝑖𝑖

)
.

(36)

In Formulation (36), ∇𝐻𝑖𝑖 depends on the specific kernel
function. For example, in the Gaussian kernel function, the

hyperparameter θ is {𝜎,𝐶}. The gradients of the extended
kernel matrix 𝐻 to 𝜎 and 𝐶 are:

∇𝜎𝐻𝑖 𝑗 = exp

(
−
||x𝑖 − x 𝑗 | |2

2𝜎2

)
(1
4
| |x𝑖 − x 𝑗 | |2𝜎−3),

= 𝐾𝑖 𝑗 (
1
4
| |x𝑖 − x 𝑗 | |2𝜎−3)

∇𝐶𝐻𝑖𝑖 = − 1
𝐶2 ,

(37)

where 𝐾 is the kernel matrix. In order to ensure that the
hyperparameters 𝐶 and 𝜎 are non-negative, let 𝐶 = exp(𝑐),
𝜎 = exp(�̂�). Therefore, the gradient of 𝐻 with respect to �̂�
and �̂� is:

∇�̂�𝐻𝑖 𝑗 = 𝐾𝑖 𝑗

(| |x𝑖 − x 𝑗 | |
2 exp(�̂�)

)2
= − 2𝐾𝑖𝑖 log(𝐾𝑖𝑖),

∇�̂�𝐻𝑖𝑖 = − exp(−𝑐).
(38)

C. RBSVM Algorithm

RBSVM is a kind of hyperparameter learning algorithm
based on generalization error gradient. The leave-one-out
cross-entropy generalization error is used to guide the hyperpa-
rameter learning. The pseudo-code of RBSVM is summarized
in Algorithm 1.

Algorithm 1: Regression-based SVM (RBSVM)
Input: Training set {(x1, 𝑦1), ..., (x𝑛, 𝑦𝑛)}.
Output: Optimal SVM-hyperparameters {𝜎,𝐶}, and

SVM-parameters {α, 𝑏}.
Iteration:
1. Initialize {𝜎,𝐶}, for example 𝜎 = 1, 𝐶 = 0.
2. Obtain the optimal solution of L2-SVM with fixed

hyperparameters {𝜎,𝐶}.
3. Compute �̂�−𝑖𝑖 and cross-entropy loss according to

Equation (27) and (29).
4. Compute the gradient of cross-entropy with

hyperpaermeter {𝜎,𝐶} according to Equation (36)
and (37).

5. Update the hyperparameter {𝜎,𝐶} to minimize
cross-entropy with the gradient descent algorithm.

6. Go back to step 2 or stop when the minimum is
reached.

In Algorithm 1, RBSVM can be solved by the fastest
gradient descent or conjugate gradient descent method, such as
Polack-Ribiere conjugate gradient method [47]. Due to its sim-
plicity and low memory requirements, the conjugate gradient
method is one of the most commonly used methods to solve
smooth unconstrained optimization problems, among which
Polack-Ribiere method is considered to be very effective.

D. Uncertainty Analysis and Model Entropy of RBSVM

Uncertainty can be divided into two major types: epistemic
uncertainty and aleatoric uncertainty [48]. Epistemic uncer-
tainty, also known as model uncertainty, is usually the result
of a lack of sufficient data. Aleatoric uncertainty comes from
the data and is caused by the noise of the data. Therefore, even

9

if more data is obtained, the aleatoric uncertainty does not
decrease. For the classification task, Zhu and Wu conducted a
systematic evaluation of the impact of noise, and summarized
some interesting observations [16]. These observations can
help researchers design various noise handling mechanisms
to improve data quality. They categorized noise into class
noise and attribute noise, and analyzed their properties and
effects separately. For class noise, directly removing samples
containing class noise can generally improve the classifica-
tion accuracy. However, it may not be the best approach to
directly remove samples that contain attribute noise, because
the remaining attributes in these samples may contain valuable
information. The noise on different attributes has a different
impact on model performance. The higher the correlation
between a attribute and a class, the greater the negative impact
of its noise. Therefore, noise processing mechanisms need to
focus more on noise-sensitive attributes rather than treating
them equally [16].

This section mainly discusses the uncertainty of SVM, and
proposes model entropy to describe the uncertainty of the
classification model. Although the classification margin of
SVM reflects the structural error, the range of the margin
exceeds the range of [0, 1] and is related to the penalty coeffi-
cient 𝐶, which does not directly reflect the uncertainty of the
model. Therefore, we propose the concept of model entropy
to measure the uncertainty of the classification model. The
model entropy is based on the average entropy of the leave-
one-out method. The distribution of training data is used to
approximate the overall distribution to solve the problem that
the classification margin cannot reflect the sample distribution.

The objective of RBSVM is to minimize the cross-entropy
loss between the leave-one-out prediction and the sample label.
The minimization of cross-entropy loss is equivalent to the
minimization of KL divergence, that is, the prediction of
RBSVM is used to approximate the true distribution of the
sample. Therefore, the product of the output of RBSVM and
the sample label are scaled to [0, 1] to form the probability
of �̃� == 𝑦. By calculating the prediction probability of
each sample, the model entropy is formed to measure the
uncertainty of the model. Its definition is given as follows:

Definition III.2 (Model Entropy). Model entropy is used to
measure the uncertainty of the model in prediction, and its
value range is [0, 1]. The larger the value, the greater the
uncertainty of model prediction. It is defined as:

𝐸𝑀 = −1
𝑛

𝑛∑
𝑖=1

[𝑃𝑦𝑖 log(𝑃𝑦𝑖) + (1 − 𝑃𝑦𝑖) log(1 − 𝑃𝑦𝑖)] (39)

where 𝑃𝑦𝑖 represents the probability that the prediction of the
𝑖 sample is correct. For samples with incorrect predictions, the
probability value is fixed at 𝑃𝑦𝑖 = 0.5, and the entropy reaches
the maximum value. If the sample prediction is correct, then:

𝑃𝑦𝑖 =

{
(1 + �̃�𝑖)/2, 𝑖 𝑓 𝑦𝑖 = +1,
(1 − �̃�𝑖)/2, 𝑖 𝑓 𝑦𝑖 = −1.

(40)

The model entropy is different from the classification mar-
gin of SVM. The difference is mainly manifested in two
aspects: First, the margin of SVM only considers support

vectors, and does not consider the distribution of non-support
vectors. Second, choosing different regular hyperparameters
will result in different margin, and it is difficult to balance the
impact of training errors and the margin on model uncertainty.
The model entropy is based on the prediction of the leave-
one-out method, not the training error. Therefore, it can better
reflect the actual predictive performance of the model.

Although the classification margin and model entropy are
different, there is a close relationship between them. Generally,
the larger the classification margin, the closer the predicted
value �̃� is to the sample label 𝑦, and the smaller the model
entropy.

IV. EXPERIMENTS

We analyze and verify the performance of RBSVM from
the aspects of hyperparameter learning and model uncertainty.
The baseline algorithms include grid search, Bayesian, radius-
margin and span hyperparameter learning.

A. Experimental Data Sets and Experimental Settings

The RBSVM algorithm proposed in this paper is tested on
sixteen data sets. The data sets come from UCI data set [49]
and LibSVM [50]. Table I lists the detailed information of all
the experimental data sets used in our experiments. For multi-
classification data, we used a one-vs-all method to convert
it to binary-classification data. Theory and experiments show
that the one-vs-all strategy is very simple and powerful, and
its results are often at least as accurate as other methods
[41], [51], [52]. For multi-classification data with 𝑁 classes,
the one-vs-all scheme trains 𝑁 binary classifiers, and each
classifier takes one of the class samples as positive and the
remaining samples as negative classes. In our experiments,
monks data had 3 class labels {1, 2, 3}. We take one of the
classes as positive and the remaining 2 classes as negative.
For example, when the {1} class of monks is positive, the
remaining two classes {2, 3} are treated as negative, which
is denoted by monks-1. The 3-classification monks data is
correspondingly decomposed into three 2-classification data,
represented as monks-1, monks-2 and monks-3, and then three
binary classifiers are trained. The same one-vs-all method is
applied to another multi-classification dataset 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.

The comparative experiments all use the radial basis kernel
function (RBF). The RBF kernel function, also known as the
Gaussian kernel function, is one of the most commonly used
methods and has many excellent properties. The hyperparame-
ter of RBF is the width parameter 𝜎, which controls the radial
range of the function. Another hyperparameter included in the
experiments is the regularization coefficient 𝐶. The platform
used for performing experiments is Dell Precison 7710.

In the experiment, the grid search uses the 10-fold cross-
validation method to find the optimal hyperparameters. In
order to find the right hyperparameters, we create a model
for each combination of hyperparameters. The search range for
hyperparameters log(𝜎) and log(𝐶) is [-8, +8] with a step size
of 1. Therefore, there are a total of 256 hyperparameter combi-
nations, and 256 models are trained and evaluated accordingly.
Random search uses a random method for hyperparameter

10

TABLE I
EXPERIMENTAL DATA INFORMATION

No. Dataset Samples Features Classes
1 breast-cancer 286 9 2
2 spect-heart 267 22 2
3 hepatitis 155 19 2
4 diabetis 768 8 2
5 thyroid 215 5 2
6 monks 432 6 3
7 tic-tac-toe 958 9 2
8 adult 1213 14 2
9 crx 690 15 2
10 cmc 1473 9 2
11 twonorm 7400 20 2
12 balance 625 4 3
13 banana 5300 2 2
14 german 1000 20 2
15 ijcnn1 49990 22 2
16 skin-nonskin 10000 3 2

learning. We focus on the random search, that is, independent
draws from a uniform density from the configuration space
[2−8, 28] for 𝜎 and 𝐶. Bayesian hyperparameter learning uses
the Hyperopt toolkit [53], which uses Tree Parzen Estimator
(TPE). Bayesian search uses the same distribution as a random
search, i.e., the distribution is uniform on [2−8, 28]. The
RM algorithm uses radius-margin for hyperparameter learning
[42]. The span algorithm uses the span margin proposed by
Oliver et al. for hyperparameter learning [38].

The choice of the hyperparameter learning algorithm has
great influence on the performance of the model. In the
experiment, the grid search and random search used the
algorithm in the scikit-learn library [54]. The hyperparameter
learning algorithm used in RBSVM, radius-margin, and span
is a conjugate gradient descent algorithm implemented by
Carl Edward Rasmussen, which uses Polack-Ribiere conjugate
gradient as the search direction [47].

B. Hyperparameter Learning and Comparative Analysis

The experiment uses the RBF kernel function, and there
are two hyperparameters. One of them is the bandwidth
hyperparameter 𝜎 in the RBF kernel function, and the other
hyperparameter is the regularization penalty coefficient 𝐶. The
hyperparameters learned by different algorithms on different
data sets are shown in Table II.

It can be seen from Table II that the hyperparameters of
different algorithms are quite different, even though sometimes
the accuracy of the algorithms is very close. The main reason
is that the strategies of different learning algorithms are quite
different.

From the perspective of prediction accuracy, the non-
model hyperparameter learning algorithms (grid search, ran-
dom search and Bayesian search) perform similarly, and the
Bayesian algorithm offers the highest accuracy. Grid search
and random search are almost the same. This is mainly because
the redundancy of the hyperparameters 𝜎 and 𝐶 is relatively
small, and the advantages of the random search method are
not significant. It can also be seen that the performance of the
traditional grid search hyperparameter selection algorithm is
stable.

Compared with non-model methods, hyperparameter learn-
ing algorithms based on model gradient (RBSVM, SpanSVM
and RMSVM) have better prediction performance. The main
reason is that gradient-based algorithms can make full use
of model information. In addition, another reason for the low
accuracy of grid search is that the granularity and search range
of grid search are limited.

It can be seen from Table III that among the hyperparameter
learning algorithms, the RBSVM algorithm has the highest
accuracy because it estimates the model generalization error
more accurately. The span algorithm is better than the RM
algorithm. The main reason is that the generalization error
estimation of span is more accurate than that of RM. This is
consistent with the findings in [38].

In order to further analyze the difference in prediction accu-
racy between the models, we use the paired-sample Wilcoxon
signed-rank test to perform the statistical significance test. This
method is a nonparametric test with no assumptions about
the distribution of the sample. The paired-sample Wilcoxon
signed-rank test is used to infer whether there is a difference in
the median of the distribution of two populations from which
the paired samples are drawn. The null hypothesis for this
test is that there is no difference in the median of the two
population distributions. The statistical results are shown in
Table IV.

In Table IV, 𝑅𝑎𝑛𝑘+ represents the sum of positive ranks,
𝑅𝑎𝑛𝑘− represents the sum of negative ranks, and 𝑍 𝑣𝑎𝑙𝑢𝑒−
is calculated based on negative ranks. From the paired-sample
Wilcoxon signed-rank test, the prediction accuracy of RBSVM
is significantly higher than those of other algorithms at the
significance level of 0.05.

C. Analysis of Running Time

In order to analyze the performance and efficiency (time
complexity) of the RBSVM algorithm on large-scale datasets,
we compare and analyze the running time of RBSVM algo-
rithms on datasets with different sizes, as shown in Figure
4. The specific method is to perform random sampling with
different sizes on the same data set, form datasets of different
sizes, and then analyze the running time of the algorithm on
these datasets. The experimental dataset is 𝑠𝑘𝑖𝑛 − 𝑛𝑜𝑛𝑠𝑘𝑖𝑛,
with random sample sizes increased from 500 to 10,000 with
500 samples at a time. This results in a total of 20 datasets of
different sizes. In the comparison, grid search, random search
and Bayesian search have a multiplicative running time when
the search scope is increased. Therefore, the search range was
divided into 256 (the search range of 𝜎 and 𝐶 is [-8, +8])
and 16 (the search range of 𝜎 and 𝐶 is [-2, +2]). The run
time of a group with a search scope of 256 exceeds 5000
seconds when the data size is greater than 4000. Therefore,
the running time of the group with a data size greater than
4000 is not retained in the figure, and only the group with a
search size of 16 is retained as a reference for comparison. The
comparative experiments were divided into 3 groups, which
were 1) gradient-based hyperparameter learning algorithms,
including SpanSVM, RMSVM and RBSVM; 2) the group with
a search count of 16 (the search range of 𝜎 and 𝐶 is [-2,2]),

11

TABLE II
LIST OF OPTIMAL HYPERPARAMETERS. THERE ARE TWO HYPERPARAMETERS, NAMELY THE GAUSSIAN KERNEL PARAMETER 𝜎 AND THE
REGULARIZATION COEFFICIENT 𝐶 . RBSVM IS THE HYPERPARAMETER LEARNING ALGORITHM PROPOSED IN THIS PAPER. SPANSVM IS

HYPERPARAMETER LEARNING BASED ON SPAN MARGIN, AND RMSVM IS RADIUS-MARGIN HYPERPARAMETER LEARNING. GRIDSEARCH,
RANDOMSEARCH AND BAYESSEARCH ARE GRID SEARCH, RANDOM SEARCH AND BAYESIAN HYPERPARAMETER LEARNING RESPECTIVELY.

Dataset RBSVM SpnSVM RMSVM GridSearch RandomSearch BayesSearch
𝜎 𝐶 𝜎 𝐶 𝜎 𝐶 𝜎 𝐶 𝜎 𝐶 𝜎 𝐶

1. breast-cancer 3.9005 3.7979 4.3421 3.8711 3.9283 0.92540 0.0039 0.0039 36.238 97.454 102.36 98.832
2. spect-heart 6.0129 3.3595 1.7195 2.3278 6.1977 2.48500 0.0039 0.0039 10.097 37.983 252.79 47.214
3. hepatitis 5.8777 2.9377 8.8703 3.6909 5.6806 1.85831 4.0000 0.5000 31.891 24.408 90.989 186.86
4. diabetis 9.1474 17.545 9.0826 17.127 5.4155 0.51174 32.000 128.00 34.692 230.98 151.81 75.439
5. thyroid 1.9382 13.896 1.5207 3.7117 1.1809 2.74195 2.0000 128.00 2.7062 102.81 2.5300 88.396
6. monks-1 1.8015 85.618 1.5358 20.944 1.9125 0.58766 4.0000 4.0000 11.027 212.15 11.040 186.70
7. monks-2 1.9515 875.72 1.7213 165.74 1.8015 85.6178 2.0000 128.00 3.3074 250.61 244.80 188.96
8. monks-3 2.9620 826.39 2.2453 108.64 1.8061 30.8556 4.0000 4.0000 11.027 212.15 11.040 186.70
9. tic-tac-toe 2.2153 20.188 2.3974 11.308 4.3590 109.523 4.0000 64.000 6.1030 160.35 5.6574 124.27

10. adult 1.7198 2.6242 0.8874 1.7704 5.7342 0.50358 16.000 2.0000 16.125 30.527 129.52 136.89
11. crx 4.0909 0.5177 3.1659 0.4262 3.9232 0.27584 4.0000 0.1250 66.317 116.98 56.840 116.03
12. cmc 0.3481 50.690 0.6290 165.14 0.1752 19.9075 16.000 64.000 12.884 31.855 20.429 192.25
13. twonorm 3.9715 0.4008 2.5280 0.4773 4.6866 0.40087 2.0000 0.0156 86.365 1.0865 183.24 5.0184
14. balance-1 3.1217 839.50 2.7669 249.59 2.8867 8.58761 4.0000 128.00 4.5363 138.87 4.8811 224.11
15. balance-2 2.9079 926.88 2.3344 568.17 2.1747 1.90632 2.0000 128.00 3.3244 190.20 2.4731 181.73
16. balance-3 2.2009 481.05 2.0243 143.80 2.2122 4.17880 2.0000 128.00 2.2593 231.91 2.6509 189.43
17. german 6.0113 1.0409 5.6368 1.3453 6.1475 0.30717 8.0000 0.5000 95.546 19.028 163.85 55.220
18. australian 6.2752 1.6780 6.6151 0.7465 5.0276 0.42501 0.1250 0.1250 3.3906 174.24 0.4186 92.808
19. ijcnn1 7.5612 3.1361 4.1767 9.0165 4.0884 14.1236 4.0000 8.0000 4.3088 30.284 12.124 154.12
20. skin-nonskin 0.3552 2.0729 0.2545 1.3859 0.2972 2.27256 0.2500 2.0000 1.5703 25.468 0.3554 60.249

TABLE III
COMPARISON AND ANALYSIS OF PREDICTION ACCURACY BETWEEN RBSVM AND OTHER ALGORITHMS. IN THE TABLE, THE ACCURACY IS THE

AVERAGE VALUE OF 10-FOLD CROSS-VALIDATION, THE STANDARD DEVIATION IS IN PARENTHESES, AND THE BOLDFACE IS THE OPTIMAL VALUE.

Dataset RBSVM(%) SpanSVM(%) RMSVM(%) GridSearch(%) RandomSearch(%) BayesSearch(%)
1. breast-cancer 75.51(0.70) 74.45(0.60) 74.11(0.66) 70.30(1.40) 70.30(1.40) 70.30(7.58)
2. spect-heart 84.26(0.18) 83.87(0.96) 83.86(1.22) 79.40(0.17) 79.40(0.17) 79.41(4.82)
3. hepatitis 89.08(0.89) 89.08(0.89) 89.08(0.89) 88.40(06.20) 87.80(0.66) 87.79(6.57)
4. diabetis 77.60(0.18) 77.59(0.17) 77.59(0.17) 75.60(0.90) 75.60(0.90) 75.63(9.03)
5. thyroid 98.12(0.06) 95.82(0.11) 96.30(0.18) 94.50(5.70) 94.50(0.57) 94.50(5.71)
6. monks-1 99.78(0.01) 90.53(0.02) 83.32(0.30) 77.50(17.10) 77.00(17.10) 78.20(17.68)
7. monks-2 97.21(0.19) 96.75(0.18) 95.59(0.16) 75.90(12.60) 74.10(10.70) 77.64(16.62)
8. monks-3 100.0(0.00) 100.0(0.00) 100.0(0.00) 100.0(0.00) 97.20(0.43) 98.60(0.18)
9. tic-tac-toe 100.0(0.00) 99.16(0.01) 98.43(0.01) 96.30(0.58) 97.70(0.50) 97.80(4.99)

10. adult 88.67(0.09) 88.70(0.06) 83.40(0.13) 82.90(0.16) 82.90(0.12) 82.85(0.13)
11. crx 86.67(0.19) 86.67(0.19) 86.67(0.19) 85.10(15.50) 84.90(17.20) 84.92(17.25)
12. cmc 77.80(0.10) 77.60(0.10) 77.60(0.10) 72.00(3.50) 72.00(3.50) 78.60(3.64)
13. twonorm 98.40(0.03) 98.30(0.04) 98.40(0.03) 97.90(1.30) 97.90(1.30) 97.80(0.12)
14. balance-1 99.68(0.01) 99.20(0.01) 99.03(0.02) 96.80(3.80) 97.10(3.70) 97.60(2.90)
15. balance-2 94.06(0.17) 92.61(0.32) 92.15(0.19) 93.90(1.40) 92.50(1.40) 92.25(2.74)
16. balance-3 99.52(0.01) 99.04(0.01) 99.04(0.01) 98.90(1.80) 99.00(1.60) 98.71(1.88)
17. german 76.40(0.15) 76.00(0.19) 76.00(0.19) 73.30(12.10) 73.40(10.30) 73.30(12.85)
18. australian 87.54(0.08) 87.39(0.11) 87.39(0.11) 87.10(0.50) 87.10(0.52) 87.11(5.24)
19. ijcnn1 97.77(0.02) 97.37(0.04) 96.27(0.05) 95.80(0.02) 95.60(0.24) 95.55(0.25)
20. skin-nonskin 99.82(0.01) 99.70(0.01) 99.52(0.02) 99.60(0.05) 99.50(0.08) 99.60(0.06)
average 91.39(0.15) 90.49(0.19) 89.69(0.23) 87.06(4.36) 86.78(3.52) 87.41(4.82)

TABLE IV
THE PAIRED-SAMPLE WILCOXON SIGNED-RANK TEST FOR THE

PREDICITON ACCURACY OF RBSVM AS COMPARED WITH OTHER
ALGORITHMS, AND THE SIGNIFICANCE LEVEL IS 𝛼 = 0.05. THE TEST
RESULTS SHOW THAT THE PREDICTION ACCURACY OF THE RBSVM

ALGORITHM IS SIGNIFICANTLY HIGHER THAN THAT OF OTHER LEARNING
ALGORITHMS.

Paired algorithm Rank+ Rank- Z value- P value
RBSVM-SpanSVM 151 2 -3.528 0.00042
RBSVM-RMSVM 136 0 -3.517 0.00044
RBSVM-GridSearch 190 0 -3.823 0.00013
RBSVM-RandomSearch 210 0 -3.919 0.00009
RBSVM-BayesSearch 206 4 -3.771 0.00016

and its hyperparameter learning algorithm using grid search,
random search and Bayesian search, respectively; 3) the group
with a search count of 256 (the search range of 𝜎 and 𝐶 is
[-8,8]), and the hyperparameter learning algorithm also using
grid search, random search and Bayesian search, respectively.

In order to obtain reliable comparative experiments, all
SVM solving algorithms in the hyperparameter learning al-
gorithms use L2-SVM, and its time complexity is 𝑂 (𝑛3).
Therefore, as the problem size increases, the run time of all
hyperparameter learning algorithms increases rapidly. Among
them, the gradient-based hyperparameter learning algorithm
can quickly converge to the optimal solution, its iteration
number is small, and the number of calls to L2-SVM is
also small. Therefore, in practical applications, gradient-based

12

Fig. 4. The run-time comparison between the proposed RBSVM algorithm
and other baseline algorithms.

algorithms often run less number of iterations than grid search,
random search, and Bayesian search. This observation is
consistent with the literature [37]. The run time of the latter
three algorithms depends on the search scope. For a large
search range, the run time can be increased to multiple times.
For example, in this experiment, the running time of candidate
parameters of 256 (16x16, 𝜎 and 𝐶 with a search range of
[-8,8]) was almost 16 times that of candidate parameters of
16 (4x4). However, if the search scope is small, we may not
be able to find suitable hyperparameters. In gradient-based
hyperparameter optimization algorithms, the running times of
RMSVM, SpanSVM, and RBSVM are comparable with no
significant differences. Its running time is mainly related to
the number of iterations. Different algorithms have different
optimal solutions for convergence, and the number of iterations
is also different. In general, if the algorithm converges to a
small generalization error, the smaller the test error of its
model, the more iterations it has. Generally, RBSVM and
SpanSVM converge to better hyperparameter solutions than
RMSVM, with slightly more iterations.

D. Uncertainty Analysis of RBSVM

Uncertainty analysis is an important part of the analysis
of machine learning algorithms. This section uses the model
entropy proposed in this paper to analyze the uncertainty of
the model learned by different algorithms.

It can be seen from Table V that the uncertainty of the
model learned by different hyperparameter learning algorithms
is quite different. Therefore, we perform a paired-sample
Wilcoxon signed-rank test on the model entropy, and the
results are shown in Table VI. In this table, the meanings
of 𝑅𝑎𝑛𝑘+, 𝑅𝑎𝑛𝑘− and 𝑃 𝑣𝑎𝑙𝑢𝑒 are the same as in Table IV.
𝑍 𝑣𝑎𝑙𝑢𝑒+ are calculated based on positive ranks. It can be seen
that the uncertainty of the model of the RBSVM algorithm is
the lowest at the significance level of 0.05.

In order to more intuitively reflect the uncertainty of the
model obtained by each hyperparameter learning algorithm,

we display the model entropy and the leave-one-out prediction
probability value on a two-dimensional graph, as shown in
Figure 5. The horizontal coordinate is the probability value
predicted by the leave-one-out method, and the vertical coor-
dinate is its corresponding model entropy. It can be seen from
the figure that the model entropy of RBSVM is the smallest.
The entropies of the grid search, random search and Bayesian
search algorithms are very close. It should be noted that the
probability here is the uncertainty probability corresponding
to the model entropy, not the prediction error.

Fig. 5. Comparative analysis of model entropy. The parentheses are (prob-
ability, entropy), where the first is the prediction probability, and the second
is the model entropy. The horizontal coordinate is the probability of correct
prediction, and the vertical coordinate is the corresponding model entropy. In
the figure, RBSVM has the lowest model entropy and uncertainty.

Model entropy is different from training or prediction error.
Even if the training or prediction error is 0, model entropy can
be used to measure the uncertainty of model. To illustrate this
situation, we use the data 𝑚𝑜𝑛𝑘 as an example. The prediction
accuracy of RBSVM, SpanSVM, RMSVM and grid search
are all 100%, but the uncertainty is different. In Figure 6, the
vertical coordinate is the classification label. The horizontal
coordinate is the prediction value of the cross-validation. If
the classification is correct and the prediction value is farther
from the origin of the coordinate, the uncertainty is lower.
Although the predictions of RBSVM, SpanSVM, RMSVM
and grid search are all correct, their classification margin and
model entropy are quite different. This also explains why the
RBSVM algorithm has the highest prediction accuracy in the
comparative experiment.

E. Discussion of Kernel Functions and Hyperparameters

Common kernel functions include linear kernel, polynomial
kernel, and Gaussian kernel functions. The linear kernel func-
tion does not require feature mapping, but instead calculates
the inner product in the original sample space, and is then
used to build a linear model. In contrast, the polynomial kernel
allows the learning of non-linear models by representing the
similarity in a feature space. The degree-𝑑 polynomial kernel
function is defined as:

𝑘 (x𝑖 ,x 𝑗) = (x𝑇
𝑖 x 𝑗 + 𝑐)𝑑 , (41)

13

TABLE V
ACCORDING TO THE DEFINITION OF MODEL ENTROPY III.2, THE UNCERTAINTY OF MODELS LEARNED BY DIFFERENT ALGORITHMS IS COMPARED.

IN THE TABLE, BOLDFACE REPRESENTS THE ALGORITHM WITH THE SMALLEST MODEL ENTROPY, AND ITS UNCERTAINTY IS THE LOWEST.

Dataset RBSVM SpanSVM RMSVM GridSearch RandomSearch BayesSearch
1. breast-cancer 0.8643 0.8631 0.8682 0.9235 0.8682 0.8801
2. spect-heart 0.7078 0.767 0.7608 0.8298 0.7433 0.8093
3. hepatitis 0.6512 0.6551 0.6551 0.7244 0.6537 0.6561
4. diabetis 0.8066 0.8076 0.8076 0.8093 0.8078 0.8715
5. thyroid 0.391 0.5516 0.4908 0.1647 0.2575 0.2516
6. monks-1 0.5256 0.6584 0.8482 0.7886 0.7661 0.7749
7. monks-2 0.4411 0.4797 0.4847 0.4847 0.5617 0.5072
8. monks-3 0.1817 0.2450 0.2781 0.2786 0.4474 0.4887
9. tic-tac-toe 0.4432 0.6221 0.5831 0.5402 0.5876 0.6128

10. adult 0.6162 0.6168 0.6901 0.7168 0.6405 0.7116
11. crx 0.8048 0.8066 0.8066 0.8066 0.7218 0.7635
12. cmc 0.6912 0.6901 0.6912 0.9045 0.9028 0.6903
13. twonorm 0.8430 0.8816 0.8426 0.9395 0.9359 0.9337
14. balance-1 0.0888 0.1091 0.1259 0.1485 0.1578 0.1463
15. balance-2 0.2359 0.2906 0.6529 0.2916 0.3621 0.2619
16. balance-3 0.0952 0.1132 0.1132 0.1132 0.1000 0.1067
17. german 0.8159 0.8289 0.8289 0.8419 0.8662 0.8665
18. australian 0.6996 0.7634 0.7634 0.7634 0.7166 0.7165
19. ijcnn1 0.3935 0.4268 0.6400 0.6356 0.6457 0.6704
20. skin-nonskin 0.4431 0.5595 0.5302 0.6531 0.6624 0.5731
average 0.5372 0.5876 0.6050 0.6179 0.6204 0.6147

(a) RBSVM accuracy: 100%, entropy: 0.182 (b) SpanSVM accuracy: 100%, entropy: 0.245 (c) RMSVM accuracy: 100%, entropy: 0.278

(d) GridSVM accuracy: 100%, entropy: 0.279 (e) RandSVM accuracy: 97.1%, entropy: 0.447 (f) BayesSVM accuracy: 98.6%, entropy: 0.489

Fig. 6. The prediction distribution of each learning algorithm on the monk data set. The horizontal coordinate is the cross-validation prediction value of the
sample, and the vertical coordinate is the classification label. The prediction accuracy of RBSVM, SpanSVM, RMSVM and GridSVM are all 100%, but their
model entropy are different. The prediction distribution of RBSVM is farthest from the origin. RMSVM and GridSVM have 1 sample whose prediction is
very close to the origin, which is easy to misclassify. RandSVM and BayesSVM have some prediction errors, that is, the prediction of positive sample is less
than 0, and the prediction of negative sample is greater than 0. The closer the prediction of the sample is to the boundary (that is, the origin in this figure),
the easier it is to predict errors and the smaller the model entropy.

TABLE VI
SIGNIFICANCE TESTS FOR RBSVM IN MODEL ENTROPIES BY USING THE
PAIRED-SAMPLE WILCOXON SIGNED-RANK TEST AT THE SIGNIFICANCE

LEVEL OF 0.05. THE RESULTS SHOW THAT THE MODEL ENTROPY OF
RBSVM IS SIGNIFICANTLY LOWER THAN THAT OF OTHER ALGORITHMS.

Paired algorithm Rank+ Rank- Z value+ P value
RBSVM-SpanSVM 7 203 -3.659 0.00025
RBSVM-RMSVM 1 189 -3.783 0.00016
RBSVM-GridSearch 18 192 -3.248 0.00116
RBSVM-RandomSearch 24 186 -3.024 0.00249
RBSVM-BayesSearch 24 186 -3.024 0.00249

where x𝑖 and x 𝑗 are samples in the input space, 𝑐 is a
constant trading off the influence of higher-order versus lower-

order terms in the polynomial. The hyperparameter 𝑐 is a
non-negative real number whose value is continuous, and the
hyperparameter 𝑑 is a positive integer whose value is discrete.
The Gaussian kernel function is widely used to map samples
to infinite-dimensional feature spaces on which the models are
built. Its hyperparameter is the bandwidth parameter 𝜎, and its
value is continuous. In addition, there are many other kernel
functions, such as the Laplacian kernel, Spline kernel and the
Wavelet kernel, to meet the needs of different tasks.

In addition to a single basic kernel function, a new kernel
function can be constructed from a combination of basic kernel
functions. Among them, the Hermite orthogonal polynomial
kernel function proposed by Moghaddam and Hamidzadeh is

14

an interesting example [55]. The Hermite kernel function is
a combination of Hermite orthogonal polynomials, which are
defined as follows:

𝐻𝑒𝑛 = (−1)𝑛 exp(𝑥
2

2
) 𝑑

𝑛

𝑑𝑥𝑛
exp(−𝑥

2

2
), (42)

where 𝐻𝑒𝑛 (𝑥) is an 𝑛th-order polynomial for 𝑛 = 0, 1, 2, 3,
These polynomials are orthogonal to each other. By combin-
ing the Hermite polynomials, the Hermite kernel function is
constructed as follows:

𝑘 (𝑥𝑖 , 𝑥 𝑗) =
𝑚∑
𝑛=0

𝐻𝑒𝑛 (𝑥𝑖)𝐻𝑒𝑛 (𝑥 𝑗) (43)

where 𝑚 is the number of polynomials used in the combina-
tion, and 𝐻𝑒𝑛 (𝑥𝑖) and 𝐻𝑒𝑛 (𝑥 𝑗) represent Hermite polynomials
of order 𝑛. Hermite kernel functions can improve classification
accuracy, reduce the number of support vectors, and increase
the speed of SVMs.

In different kernel functions, the number and properties of
their hyperparameters are often different. Hyperparameters can
be divided into two categories according to their properties.
One type of hyperparameters is continuous, such as the
bandwidth hyperparameter 𝜎 in a Gaussian kernel function.
The other type of hyperparameter is discrete, such as order 𝑑
in a polynomial kernel function. Hyperparameters of different
properties are often learned in different ways. This paper
focuses on the learning of the first type of hyperparameters,
such as the hyperparameter 𝜎 in the Gaussian kernel function
and the regularization hyperparameter 𝐶. These hyperparam-
eters can be learned using gradient-based algorithms. For the
second type of hyperparameters, it is often not straightforward
to employ the gradient descent algorithms. Its optimization
algorithm can refer to integer optimization methods or other
methods [56].

V. CONCLUSIONS

In this paper, we have presented a new hyperparameter
learning algorithm RBSVM based on a novel idea where
the maximum margin classification problem is transformed
into a regression problem. RBSVM finds the hyperparameters
of the maximum margin classification model by optimizing
the objective function defined on the unbiased generalization
error with a gradient descent algorithm. In addition, we have
proposed a new method for model uncertainty measurement
based on leave-one-out prediction probability.

The experimental analysis and significance test show that
the proposed RBSVM offers significantly higher prediction
accuracy than the baseline algorithms, with lower model
uncertainty. The training time of the RBSVM algorithm is
similar to that of SpanSVM and RMSVM, but less than that of
grid search and Bayesian methods. Different from traditional
hyperparameter learning algorithms, RBSVM uses the tanh
function to approximate the piecewise linear regression func-
tion, and guides the hyperparameter learning by optimizing
the cross-entropy loss function.

The proposed RBSVM algorithm is based on a gradient
descent method, which can only handle continuous hyperpa-
rameters, but not discrete hyperparameters. In the future, we

intend to use integer optimization algorithms to deal with the
problem of learning with discrete hyperparameters.

ACKNOWLEDGMENT

We would like to thank the editors and reviewers for their
insightful comments and suggestions that lead to improved
quality of this article.

REFERENCES

[1] A. Tsvieli and N. Weinberger, “Learning maximum margin channel
decoders,” IEEE Transactions on Information Theory, vol. 69, no. 6,
pp. 3597–3626, 2023.

[2] C. Tzelepis, V. Mezaris, and I. Patras, “Linear maximum margin clas-
sifier for learning from uncertain data,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2948–2962, 2018.

[3] S. Abidi, M. Piccardi, I. W. Tsang, and M.-A. Williams, “Well-m3n:
A maximum-margin approach to unsupervised structured prediction,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 3, no. 6, pp. 427–439, 2019.

[4] B.-B. Jia and M.-L. Zhang, “Maximum margin multi-dimensional classi-
fication,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 33, no. 12, pp. 7185–7198, 2022.

[5] F. Pernkopf, M. Wohlmayr, and S. Tschiatschek, “Maximum margin
bayesian network classifiers,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 3, pp. 521–532, 2012.

[6] K. H. Kim and S. Y. Sohn, “Hybrid neural network with cost-sensitive
support vector machine for class-imbalanced multimodal data,” Neural
Networks, vol. 130, no. 10, pp. 176–184, 2020.

[7] V. Vapnik, The Nature of Statistical Learning Theory. Springer New
York, 2013, doi: 10.1007/978-1-4757-2440-0.

[8] M. Avolio and A. Fuduli, “A semiproximal support vector machine
approach for binary multiple instance learning,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 32, no. 8, pp. 3566–3577,
2021.

[9] Y. Chen, Q. Mao, B. Wang, P. Duan, B. Zhang, and Z. Hong, “Privacy-
preserving multi-class support vector machine model on medical diag-
nosis,” IEEE Journal of Biomedical and Health Informatics, vol. 26,
no. 7, pp. 3342–3353, 2022.

[10] G. Hoxha and F. Melgani, “A novel svm-based decoder for remote sens-
ing image captioning,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 60, no. 8, pp. 1–14, 2022.

[11] A. Glowacz, “Thermographic fault diagnosis of shaft of bldc motor,”
Sensors, vol. 22, no. 21, pp. 1–13, 2022.

[12] A. Glowacz, “Thermographic fault diagnosis of electrical faults of com-
mutator and induction motors,” Engineering Applications of Artificial
Intelligence, vol. 121, no. 5, pp. 1–15, 2023.

[13] M. Tanveer, T. Rajani, R. Rastogi, Y. H. Shao, and M. A. Ganaie,
“Comprehensive review on twin support vector machines,” Annals Of
Operations Research, 2022, doi: 10.1007/s10479-022-04575-w.

[14] Jayadeva, R. Khemchandani, and S. Chandra, “Twin support vector
machines for pattern classification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 5, pp. 905–910, 2007.

[15] M. A. Ganaie, M. Tanveer, and C.-T. Lin, “Large-scale fuzzy least
squares twin svms for class imbalance learning,” IEEE Transactions
on Fuzzy Systems, vol. 30, no. 11, pp. 4815–4827, 2022.

[16] X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study
of their impacts,” Artificial Intelligence Review, vol. 22, no. 3, pp. 177–
210, 2004.

[17] H. Liu, Y.-S. Ong, Z. Yu, J. Cai, and X. Shen, “Scalable gaussian process
classification with additive noise for non-gaussian likelihoods,” IEEE
Transactions on Cybernetics, vol. 52, no. 7, pp. 5842–5854, 2022.

[18] M. Tanveer, M. A. Ganaie, A. Bhattacharjee, and C. T. Lin, “Intuition-
istic fuzzy weighted least squares twin svms,” IEEE Transactions on
Cybernetics, vol. 53, no. 7, pp. 4400–4409, 2023.

[19] S. Moslemnejad and J. Hamidzadeh, “A hybrid method for increasing
the speed of svm training using belief function theory and boundary
region,” International Journal Of Machine Learning And Cybernetics,
vol. 10, no. 12, pp. 3557–3574, 2019.

[20] J. Hamidzadeh and S. Moslemnejad, “Identification of uncertainty and
decision boundary for svm classification training using belief function,”
Applied Intelligence, vol. 49, no. 6, pp. 2030–2045, 2019.

15

[21] S. Moslemnejad and J. Hamidzadeh, “Weighted support vector machine
using fuzzy rough set theory,” Soft Computing, vol. 25, no. 13, pp. 8461–
8481, 2021.

[22] Z. Liang and L. Zhang, “Uncertainty-aware twin support vec-
tor machines,” Pattern Recognition, vol. 129, SEP 2022, doi:
10.1016/j.patcog.2022.108706.

[23] K. Nguyen, T. Le, T. D. Nguyen, G. I. Webb, and D. Phung, “Robust
variational learning for multiclass kernel models with stein refinement,”
IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 9,
pp. 4425–4438, 2022.

[24] C. E. d. S. Santos, R. C. Sampaio, L. d. S. Coelho, G. A. Bestard,
and C. H. Llanos, “Multi-objective adaptive differential evolution for
svm/svr hyperparameters selection,” Pattern Recognition, vol. 110, FEB
2021, doi: 10.1016/j.patcog.2020.107649.

[25] J.-Y. Hsia and C.-J. Lin, “Parameter selection for linear support vector
regression,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 12, pp. 5639–5644, 2020.

[26] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-
of-the-art,” Knowledge Based Systems, vol. 212, JAN 2021, doi:
10.1016/j.knosys.2020.106622.

[27] S. Jain and R. Rastogi, “Parametric non-parallel support vector ma-
chines for pattern classification,” Machine Learning, OCT 2022, doi:
10.1007/s10994-022-06238-0.

[28] S. Czaplak and A. Horzyk, “Automatic optimization of hyperpa-
rameters using associative self-adapting structures,” in 2022 Interna-
tional Joint Conference on Neural Networks, 2022, pp. 1–8, doi:
10.1109/IJCNN55064.2022.9892758.

[29] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 9, pp. 5149–5169, 2022.

[30] W. Jiang and S. Siddiqui, “Hyper-parameter optimization for support
vector machines using stochastic gradient descent and dual coordinate
descent,” EURO Journal on Computational Optimization, vol. 8, no. 1,
pp. 85–101, 2020.

[31] S. Nematzadeh, F. Kiani, M. Torkamanian-Afshar, and N. Aydin, “Tun-
ing hyperparameters of machine learning algorithms and deep neural
networks using metaheuristics: A bioinformatics study on biomedical
and biological cases,” Computational Biology and Chemistry, vol. 97,
2022, doi: 10.1016/j.compbiolchem.2021.107619.

[32] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning:
Methods, Systems, Challenges. Springer Cham, 2019, doi: 10.1007/978-
3-030-05318-5.

[33] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, pp. 281–305,
2012.

[34] Z. Yang and A. Zhang, “Hyperparameter optimization via sequential
uniform designs,” Journal of Machine Learning Research, vol. 22, pp.
1–47, 2021.

[35] K. J. Prabuchandran, S. Penubothula, C. Kamanchi, and S. Bhatnagar,
“Novel first order bayesian optimization with an application to rein-
forcement learning,” Applied Intelligence, vol. 51, no. 3, pp. 1565–1579,
2021.

[36] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng,
C. Benjamins, T. Ruhkopf, R. Sass, and F. Hutter, “Smac3: A versatile
bayesian optimization package for hyperparameter optimization,” Jour-
nal of Machine Learning Research, vol. 23, pp. 1–9, 2022.

[37] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016. [Online]. Available: http://www.deeplearningbook.org

[38] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing
multiple parameters for support vector machines,” Machine Learning,
vol. 46, no. 1, pp. 131–159, 2002.

[39] J. Wainer and G. Cawley, “Empirical evaluation of resampling pro-
cedures for optimising svm hyperparameters,” Journal of Machine
Learning Research, vol. 18, no. 1, pp. 475–509, 2017.

[40] S. Wang, Q. Liu, E. Zhu, F. Porikli, and J. Yin, “Hyperparameter
selection of one-class support vector machine by self-adaptive data
shifting,” Pattern Recognition, vol. 74, pp. 198–211, 2018.

[41] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,”
Journal of Machine Learning Research, vol. 5, pp. 101–141, 2004.

[42] S. S. Keerthi, V. Sindhwani, and O. Chapelle, “An efficient method
for gradient-based adaptation of hyperparameters in svm models,” in
Advances in Neural Information Processing Systems, 2007, pp. 673–
680.

[43] G. C. Cawley and N. L. Talbot, “Fast exact leave-one-out cross-
validation of sparse least-squares support vector machines,” Neural
Networks, vol. 17, no. 10, pp. 1467–1475, 2004.

[44] G. C. Cawley and N. L. Talbot, “Efficient approximate leave-one-
out cross-validation for kernel logistic regression,” Machine Learning,
vol. 71, no. 2-3, pp. 243–264, 2008.

[45] M. Opper and O. Winther, “Gaussian processes for classification: Mean-
field algorithms,” Neural Computation, vol. 12, no. 11, pp. 2655–2684,
2000.

[46] J. Liu, Z. Wu, L. Xiao, and H. Yan, “Learning multiple parameters for
kernel collaborative representation classification,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 31, no. 12, pp. 5068–5078,
2020.

[47] C. E. Rasmussen and H. Nickisch, “Gaussian processes for machine
learning (gpml) toolbox,” The Journal of Machine Learning Research,
vol. 11, pp. 3011–3015, 2010.

[48] E. Huellermeier and W. Waegeman, “Aleatoric and epistemic uncertainty
in machine learning: an introduction to concepts and methods,” Machine
Learning, vol. 110, no. 3, pp. 457–506, 2021.

[49] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[50] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[51] L. Ding and Y. Chen, “Leave-one-out approach for matrix completion:
Primal and dual analysis,” IEEE Transactions on Information Theory,
vol. 66, no. 11, pp. 7274–7301, 2020.

[52] Y. Zhu, C. Markos, R. Zhao, Y. Zheng, and J. J. Yu, “Fedova: One-vs-
all training method for federated learning with non-iid data,” in 2021
International Joint Conference on Neural Networks, 2021, pp. 1–7, doi:
10.1109/IJCNN52387.2021.9533409.

[53] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in International Conference on Machine Learning,
vol. 28, 2013, pp. 115–123.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[55] V. H. Moghaddam and J. Hamidzadeh, “New hermite orthogonal polyno-
mial kernel and combined kernels in support vector machine classifier,”
Pattern Recognition, vol. 60, pp. 921–935, 2016.

[56] X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature
selection framework using robust 0-1 integer programming,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 7,
pp. 3005–3019, 2021.

Shili Peng received the M.S. degree from Central
South University, Changsha, China, in 2005, and
the Ph.D. degree from Tianjin University, Tian-
jin, China, in 2017. He has been working with
the Guangdong University of Finance, Guangzhou,
China, since 2005, where he is currently the Director
of the Department of Internet Finance. He has served
as a Cadre of the Economic and Information Com-
mission of the Guangdong Provincial Government in
2013. His current research interests include machine
learning and high-dimensional statistics.

Wenwu Wang (Senior Member, IEEE) is currently
a Professor of signal processing and machine learn-
ing and the Co-Director of the Machine Audition
Laboratory, Centre for Vision Speech and Signal
Processing, University of Surrey, Guildford, U.K. He
is also an AI Fellow with the Surrey Institute for
People-Centred Artificial Intelligence, University of
Surrey. His current research interests include signal
processing, machine learning and perception. He has
more than 350 publications in these areas.

16

Yinli Chen received his B.Eng. degree from Nankai
University, Tianjin, China, 1985 and M.E. degree
from Institute of Computer Technology, Chinese
Academy of Sciences, Beijing, China in 1988. He
started working with Huazhong University of Sci-
ence and Technology from 1988 to 1992. In 1992, he
joined Guangdong University of Finance. He is a full
professor at Guangdong University of Finance and
the head of the Department of Computer Science and
Technology. His research interests focus on pattern
analysis and machine learning in financial markets.

Xueling Zhong received the Ph.D. degree in busi-
ness administration from the School of Management,
Jinan University, Guangzhou, China, in 2011. He is
currently a Professor with the School of Internet
Finance and Information Engineering, Guangdong
University of Finance, Guangzhou, China. His cur-
rent research interests include production schedul-
ing, and neural combinatorial optimization.

Qinghua Hu (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the Harbin In-
stitute of Technology, Harbin, China, in 1999, 2002,
and 2008, respectively. He was a Postdoctoral Fellow
with the Department of Computing, The Hong Kong
Polytechnic University, from 2009 to 2011. He is
currently a Chair Professor with the College of In-
telligence and Computing, Tianjin University, China;
and the Director of the SIG Granular Computing and
Knowledge Discovery and the Chinese Association
of Artificial Intelligence. He is supported by the Key

Program, National Natural Science Foundation of China. He has published
over 300 peer-reviewed articles. His current research is focused on uncer-
tainty modeling in big data, machine learning with multi-modality data, and
intelligent unmanned systems.

